Autism, Social Cognition, and “Mirror Neurons”

Raphael Bernier, Ph.D.
Department of Psychiatry and Behavioral Sciences
Department of Psychology
University of Washington Autism Center
Center on Human Development and Disability
Disclosures

No Conflicts of Interest

Funding sources:

SFARI SIMONS FOUNDATION AUTISM RESEARCH INITIATIVE

National Institutes of Health

Autism Spectrum Disorders,
ABC-CLIO.
Overview

- Autism as disorder of social cognition
- Imitation and autism
- “Mirror Neuron System”
- Current work underway
Social Cognition

The ability to detect, attend to, and process social information in the environment, and to use this information to guide behavior.
Social Brain Circuitry Implicated in ASD

- Medial Prefrontal Cortex (Dawson et al, 1998)
- Amygdala (Baron-Cohen et al, 2000)
- Inferior Frontal Gyrus; Inferior Parietal Lobe (Dapretto et al, 2006)
- Anterior Cingulate (Mundy, 2003)
- Hippocampus (Bauman & Kemper, 2005)
- Superior Temporal Sulcus (Pelphrey & Carter, 2008)
- Fusiform Gyrus (Schultz et al, 2000)
- Cerebellum (Courchesne, 1997)
Social Brain Circuitry Implicated in ASD

Inferior Frontal Gyrus; Inferior Parietal Lobe (Dapretto et al, 2006)

Imitation Impairments in Autism

- **Symbolic meaning hypothesis**
 - (Baron-Cohen, 1988; Rogers et al, 1996)

- **Executive functioning hypothesis**
 - (Ozonoff, Pennington & Rogers, 1991; Rogers et al, 1996)

- **Poor social motivation to attempt tasks**
 - (Trevarthen & Aitken, 2001)

- **Dyspraxia or motor dysfunction**
 - (Jones & Pryor, 1985)

- **Deficit in Self-Other mapping**
 - (Rogers & Pennington, 1991; Williams et al, 2001)
Imitation and Mirror Neurons

Class of visuomotor neurons that activate when an individual is both performing an action and observing a similar action.

Potentially serve as neurological substrate for self other mapping.
Mirror Neurons: non-human primates

• Mirror neurons activate during the execution AND observation of actions.

• First identified in area F5 of monkeys.

• Proposed to mediate action understanding.

(Gallese et al, 1996)

(from Ramachandran & Oberman, 2006)
In humans, also appears to be an execution/observation system.

Proposed to be the mirror neuron system—limited direct evidence (e.g., fMRI and EEG).
Mirror Neuron Regions

- Inferior Frontal Gyrus
- Inferior Parietal Lobe
- Related regions?
 - Superior Temporal Sulcus
 - Insula
 - Anterior Cingulate

Rizzolatti & Arbib, 1998
Mirror Neurons: Humans

In humans, area 44 (Inferior Frontal Gyrus) is activated when observing, executing, and imitating movement.

Iacoboni et al, 1999
Mirror Neurons: Humans

- Only species specific actions result in MNS activation.

- Buccino et al, 2004
Mirror Neurons: Humans

Activation occurs
- With intransitive movements
- Actions that are in behavioral repertoire (lip reading vs barking)
- Emotional expressions

Seems to serve a wider role.

Provide the ability to understand others’ actions and emotions through internal representation without reflection.

Hypothesized to underlie imitation, empathy, theory of mind, metaphor, and evolution of language.

How best to study non-invasively with individuals with autism?
Electroencephalography and Mirror Neurons

EEG Mu rhythm reflects execution/observation matching system
EEGs and Mirror Neurons

Mu rhythm is neuronal activity recorded from central channels over motor cortex in ~8-13 Hz frequency band

- At rest = synchronous
- Execution and observation of movement = asynchronous → reducing mu amplitude
EEGs and Mirror Neurons
Research Questions

- Proposed role of MNS in social cognition.
- Proposed dysfunction of MNS in individuals with autism.
- Is there disruption of the MNS in autism?
- Is there a correlation between imitation ability and MNS functioning?
Procedure
Imitation battery

- Tasks:
 - Single step facial expressions
 - Sequenced facial expressions
 - Single step hand gestures
 - Sequenced hand gestures
 - Complex two hand gestures
 - Meaningless hand movements
 - Actions on objects (gentle or harsh style)
Imitation Task Models

Single Face Expression Example

Sequenced Hand Gesture Example
Results

Ratio of mu power by condition

Condition X Group: p<.05

Bernier et al 2007
Results

Mu suppression and face summary score
in the observe condition

Difference in mu power (greater value = greater attenuation)

Bernier et al 2007
Conclusions

- Individuals with ASD show less attenuation of the mu rhythm in response to the observation of actions. Suggests dysfunction of the mirror neuron system.

- Continued impairments in behavioral imitation skills.

- Mu wave attenuation when observing actions correlates with facial imitation skills. Suggests the EEG mu rhythm may reflect underlying neurological activity related to imitation ability.
Question?

- Individuals with autism demonstrate differential mu rhythm activity.

- Do individuals with autism show differences in areas of cortical activation when observing, executing or imitating actions?
Source Localization
Observation and Imitation
Observation and Imitation

Greater amplitude in Cuneus (BA17) in typical adults compared to adults with ASD.

Bernier, Lunde & Dawson, 2007
Conclusions

- No significant differences between peak areas of activity for execute, observe, and imitate conditions.
- Peak areas of activation are similar for both groups.
- Differences are found during distinct phases of action (ie, approach to grasp).
- Other areas (ie, Cuneus) warrant further investigation.
Question?

- Adults with autism demonstrate differential mu rhythm activity linked to distinct stages of action observation.

- How does this system work in children with autism?
EEG mu rhythm in children: 6-7 year olds

Bernier & Aaronson, in preparation
This system is disrupted in both children and adults with autism.

How does this system work across the lifespan?
EEG Mu rhythm over development

Oberman, McCleery, Hubbard, Bernier, Pineda, under review
This action execution/observation system is disrupted in both children and adults with autism.

- How is this system impacted by intervention?
- Is this electrophysiological signature an endophenotype?
- Is there a way to address connectivity?
Studies underway

- Intervention Response Study
- Family Traits Research
- Twins study
- Social Connectivity
Current EEG mu rhythm study:

- Response to Early Start Denver Model (ESDM) intervention
- Diagnosed and assigned b/w 18-30 months
- Received 2 years of intervention
- Evaluated for follow-up b/w 6-7 years

Bernier & Aaronson, in preparation
Familiarity Vs. Unfamiliarity

Unfamiliar

Familiar
Family Traits Research (ACE Project 1)

- EEG mu rhythm in parents
 - Parents in Simplex families
 - Parents in Multiplex families
 - Parents of typically developing children
EEG Mu Rhythm

Main Effect for Group: p<.001; Main Effect for Gender: p<.01; Interaction Effect for Group X Gender: p<.05
Twins

Biological Motion

Non-biological Motion
Twins

Biological Motion

Non-biological Motion
Twins
Social Connectivity

Effective connectivity based on ERP/EEG components involved in face processing.

- Basic Visual Processing
- Structural Face Encoding
- Higher Order Face Processing
- Action Exec/Obs Matching
Social Connectivity

Three types of face stimuli:

- Non-emotional movement
- Emotional movement
- Impossible movement
Social Connectivity

EMOTION

PUFFED CHEEKS

IMPOSSIBLE MOTION
Pilot data
So What???

This system is functioning differently.

Better understanding may help with:

– Understanding the etiology of autism

 Endophenotype?

– Aid in early detection

 Earlier is better.

– Help focus intervention approaches

 Physical demonstration over observation

 Medication
Thanks to:
All the participating families

- Jen Varley, MS
- Kate Stamper, MS
- Ben Aaronson, BS
- Katy Ankenman, MSW
- Tracey Ward, BS
- Emily Champoux, BS
- Libby Bliss, BS
- Kelly Johnson, PhD
- Ari Stevens, PhD
- Beau Reilly, PhD
- Sean Ackerman, MD
- Julia Wenegrat, BS
- Kait Cart, BS
- Elizabeth Aylward, PhD
- Kaitlin Venema, BS
- Rachel Lowy, BS
- James McPartland, PhD
- Emily Jones, PhD
- Susan Faja, PhD
- Jeff Munson, PhD
- Sara Webb, PhD
- Mike Murias, PhD
- Annette Estes, PhD
- Felice Orlich, PhD
- Bryan King, MD
- Geri Dawson, PhD
- Wendy Stone, PhD
- Evan Eichler, PhD
- Jack McClellan, MD
- Ellen Wijsman, PhD
- Wendy Raskind, MD
- Nicky Chapman, PhD
Mirror Neurons and Autism

- **Evidence for dysfunction:**
 - Imaging:
 - Dapretto et al, 2006
 - Hadjikhani et al, 2006
 - Williams et al, 2006
 - Martineau et al, 2010
 - Yamasaki et al, 2010
 - Electroencephalography:
 - Oberman et al, 2005
 - Bernier et al, 2007
 - Bernier et al, 2007
 - Oberman et al, 2008
 - Martineau et al, 2008
 - Transcranial Magnetic Stimulation:
 - Theoret et al, 2005
 - Electromyographic Activity:
 - Cattaneo et al, 2007

- **Evidence against dysfunction:**
 - Imaging:
 - Dinstein et al, 2009
 - Electroencephalography:
 - Raymaekers et al, 2009
 - Fan et al, 2010