From genes to behavior: How electrophysiological studies can provide insight into autism and other disorders

Sara Jane Webb, PhD
Research Assistant Professor
Psychiatry and Behavioral Sciences
Funded by NICHD
Collaborative Program of Excellence in Autism, NIMH Studies to Advance Autism Research and Treatment, Cure Autism Now, National Alliance for Autism Research
University of Washington

Part 1: From Genes to Behavior

Behavioral diagnosis of PDDs

- Typically diagnosed around 3 years of age
- Can be reliably diagnosed at 18 months
- Retrospective home video studies and behavior studies in “at risk” infants distinguish at 12 months
- Pattern of behavioral change
 + 6 and 12 months
 + 12 and 18 months
- 4:1 ratio of males to females
- Social class distribution resembles that of the general population
- Equivalent distribution across racial and ethnic boundaries

Genes

- 2q
- 7p - Langrange
- FoxP, WNT2, HOXA1, HOXB1
- RELN - neuronal signaling, synaptic transmission, plasticity
- 15q - Prader-Willi, Angelman Syndrome region
- X - FMR1 - Fragile X
- MECP2 - Rett’s
- NLGN2, NLGN3 (neuroligins)
- GABA receptor subunits (4q12; 5q34-35; 6q15; 15q12)
- Serotonin transport genes
- Differ by sex (male vs female affected families)
- Differ by parent of origin

Genetic syndromes:

- Aarskog syndrome (X)
- Angelman Syndrome (15q)
- Cornelia de Lange Syndrome (5)
- Fragile X (X-FMRP gene)
- Hypomelanosis of Ito
- Mobius syndrome
- Neurofibromatosis
- PKU
- Prader-Willi Syndrome (15q)
- Ron Disorders (X-MeCP2 gene)
- Smith-Lemli-Opitz Syndrome (13q)
- Sotos Syndrome
- Tourette Syndrome
- Tuberous Sclerosis
- Williams Syndrome (7q)

http://www.exploringautism.org/genesis/articles.html
Intermediate steps

Genes

Endophenotypes

Phenotype:
• Candidate Core Behaviors
• Meaningful Subcomponents
• Dimensional

Disease

Endophenotype

Genes

Endophenotypes

• Heritable risk factor (relatives)
• Associated with gene
• Associated with disease

Phenotype

Disease

Part 2: Electrophysiological insights

Phenotype

Genes

Endophenotypes

Phenotype:
• Candidate Core Behaviors
• Meaningful Subcomponents
• Dimensional

Disease

Neurophysiology
• EEG/ERP

Biochemistry
• Grey matter choline compounds
• Serotonin

Neuroanatomy
• White matter
• Mini columns
• Brain growth
• Cerebellum, Superior temporal sulcus, Fusiform gyrus, MTL, Amygdala

“Social Processing”
• Face memory
• Voice/tone
• Emotion id and use
• Social motivation
• Social expressiveness

Behavioral Flexibility
• Language/conversation
• Executive functioning
• Global/local processing
EEG vs. ERP

- EEG - electroencephalogram
 - “Spontaneous” background activity
 - Reflects the state of the brain
 - Induced
 - Not time locked
- ERP - “event related” “evoked”
 - Time locked to a stimulus or behavior
 - Averaged

ERPs - latency, amplitude, & topography
EEG - frequency, power, & topography
Coherence (connectivity)

Can EEG/ERP be used as endophenotypes? – Other disorders

- Heritability
 - Alcoholism (Almasy et al., 1999; Martin et al., 2005)
 - Theta 40-60%, Linked to 7
 - P300 amp & latency
 - Twins (Anokhin et al., 2004; Katsanis et al., 1998; Smit et al., 2005; van Beijsterveldt van Baal, 2002)
 - Frontal N2/P3 amplitude 60%
 - P300 amp 50%
 - P300 lat 51%
 - EEG peak alpha power 77%

- At risk pop.
 - Dyslexia
 - Auditory ERP - phoneme processing
 - Alcoholism
 - Reduced amplitude P300 to novelty
 - Schizophrenia (relatives)
 - Prolonged latency
Part 2b: Insights into autism

ERPs- Event Related Potentials
- Model –
 - Collection during stimuli / task known behavioral impairment
 - Autism - Face Processing
 - Face memory is phenotype of disorder
 - Identify stage of disruption

N170 across development
- ERP component that is elicited by Faces.
- Adults
 - Latency 140 to 170 msec
 - Greater & faster to faces than other stimuli
 - Right lateralized
- Children 3 to 11 years
 - Latency 280 msec --> 180 msec
 - Right lateralized

Bentin et al., 1996; Taylor et al., 1999; 2001; Webb, Dawson et al., 2006

N170

-5 -3 -1 1 3 5 7
-100 0 100 200 300 400 500 600 700 milliseconds
0.001 0.01 0.1 1 10 100 1000 microVolts

Faces Inverted Faces Furniture
N170 -
Adults and Adolescents with ASD

- In ASD, slower response to faces
- In ASD, faster RT response to furniture than faces

Precursor N170-
3 to 4 year olds with ASD

- Lack of right hemisphere specialization

McPartland, Dawson, Webb, Panagiotides, & Carver, 2005

Dawson, Webb et al. (2004)

Dawson, Webb, Estes, Munson & Faja (in review)
N170 - Endophenotype?

- Delayed temporal processing & abnormal cortical specialization
- Populations:
 - 3 to 4 year olds, 6 year olds, Adolescents & Adults, Parents (multiplex families)
- Related to behavior - yes
- Risk Factor - ?
- Heritable - ?

EEG Power

- Collection during resting or active state
- Model – Target processes that have known EEG correlates & known behavioral deficits
 - Autism – Imitation
 - Imitation deficits (behavior) in ASD
 - Identify abnormalities in neural patterns underlying observe/ imitate

Imitation & Mu

- Mu = 8 to 13 Hz over central leads
 - Execute, Observe, Imitate – Muthukumaraswamy et al., 2004
 - Ratio of power relative to resting
 - Log transformed due to non-normality or ratio data
 - Negative value representing attenuation
EEG Power (wavelet)

- Collection during resting or active state
- Model – Target processes that have known EEG correlates
 - Autism – Feature (temporal) Binding
 - Parts based processing bias behavioral phenotype of ASD
 - Identify abnormalities in neural patterns that may contribute

Temporal binding

- Temporal binding
 - Neurons that respond to the same object are tagged by their temporal correlation during firing (Milner, 1974; von der Malsburg, 1981).
- Assessed by EEG Power in gamma band (30 to 80 Hz)
- Feature Binding (Müller et al., Tallon-Baudry et al.)
- Central coherence (Brock et al., 2001)

Temporal binding & gamma

- Binding of actual items to create additional (illusory) item
 - Kanisza figures
 - Mooney Faces
- Increase in gamma over visual cortex to perception of “illusory figures”
 - ~ 50 to 100 msec after stim onset
Temporal Binding- Circuitry formation

- Binding of active neural regions to accomplish task efficiently
 - Delayed match to sample
 - Multiple stimuli types
 - Encoding
 - Delay (working memory)
 - Retrieval and Response

Mu / Gamma - Endophenotypes?

- ASD mu atypical
- ASD gamma typical (~)
- Atypical binding of frontal-occipital regions.

- Related to behavior – Yes (mu)
- Risk factor - ?
- Heritable - ?

EEG - active state

- Mu –
 - Lack of mu attenuation during action observation
- Gamma –
 - Increase in gamma activity during working memory
 - Failure to link neural circuitry

EEG Connectivity

- Collection during resting or active state
 - Autism
 - Individuals with autism have known white matter abnormalities
 - Proposed deficit in long range connections
Connectivity

- Coherence
 - Phase relations between two EEG signals
 - Squared correlation coefficient, expressed as a function of frequency
 - Coherence reflects the transmission of neural signals along axonal projections. (Nunez, 1981)

Connectivity - Endophenotype?

- Band specific differences
- Relation between frontal and parietal/occipital

- Related to behavior –
 - Theoretically - yes
- Heritable -
 - Schizophrenia / Twins - yes
- Risk factor - ?

Conclusions, ASD

- Temporal slowing during early processing stages
- Lack of or atypical cortical specialization
- Alterations in resting and active state EEG
- Disrupted connectivity
Part 3: Implications

Differentiation of disease states

- Common phenotypes
 - Face processing/memory
 - Attention
 - Working memory

Implications for therapy

- Does intervention lead to
 - More efficient processing?
 - Latency
 - Amount of activation
 - Connectivity?
 - Compensation or normalization?

Collaborators

- Geraldine Dawson PhD
- Elizabeth Aylward PhD
- Andreas Keil (University of Konstanz, Germany)
- James McPartland PhD (Yale)
- Mike Murias PhD
- Heracles Panagiotides PhD
- Neva Oskin PhD
- Todd Richards PhD
- Raphael Bernier MA, PhC
- Susan Faja MA
- Karen Toth MA, PhC
- Rebecca Green
- Kristen Merkle
- Megan Paul
- Audrey Quinn
- Jessica Shook